
Virtual Development Environment in a Box

Students: Dylan McDougall (dmcdougall2019@my.fit.edu)

and Ian Orzel (iorzel2019@my.fit.edu)

Faculty: Ryan Stansifer (ryan@fit.edu)

Client: Ryan Stansifer (ryan@fit.edu)

Dates of meetings:

● January 11 from 3:00 - 4:00 PM

Goal:

Our goal is to create a platform that allows students to run software inside of a virtual

environment that can be configured to have system specifications different from the client

system. This system should be easy to use for both students and faculty, should be scalable, and

should support multiple platforms. Specifically, the system should be able to support the

Compiler Theory class, allowing users to run Sparc binaries.

Motivation:

Our motivation is to minimize the difficulties related to setting up the environments for students

to use during their coursework, especially when that software requires exotic hardware. This

creates problems for students and faculty, as students have to spend time attempting to get the

system working and faculty have to spend time helping them with this process. We also hope to

minimize issues where students complete tasks on their system that their professors are not able

to replicate.

Approach:

● Use on-demand virtual development environments custom-tailored to your courses.

These virtual environments contain all the necessary custom software you need to

mailto:dmcdougall2019@my.fit.edu
mailto:iorzel2019@my.fit.edu
mailto:ryan@fit.edu
mailto:ryan@fit.edu


develop programs for assignments, as well as to test and debug your software, all

wrapped up in a tidy container that you install once, and you’re done.

● Use the pre-made environments created for the Compiler Theory, Programming

Languages, and Operating Systems courses.

● Easily emulate foreign guest architectures other than that of your host machine without

even having to think about it.

● Run these development environments on all the major platforms: Windows, macOS, and

Linux.

● Transfer files between your host’s native filesystem and the container’s virtual filesystem

in an intuitive manner.

● Access and interact with the virtual shell of the container just as you would your own.

● Be able to create containers with whatever custom software you need to distribute to your

students for a specific course.

Algorithm and tools:

● We have ultimately decided to use QEMU for virtualization. We had a strong sense that

we were going to use this software from the beginning because it had a number of distinct

advantages. For one, it is completely open source, unlike competing software, which is

either closed or only partially open source. It is also incredibly flexible. Virtual machines

can easily be configured to run headlessly and are easy to distribute. QEMU is chiefly

emulation software, which is advantageous to us since it allows us to not worry about

architectural discrepancies.



● Our program is written in Python, and in order to distribute a usable version of this

Python code, we are using something called PyInstaller. PyInstaller allows us to package

up our Python code, along with all of its dependencies, into native self-extracting

executable files. Using this tool, the end-user need not even be concerned that the

program is written in Python, since it packages up the Python project in a way that allows

it to be interacted with just like any natively compiled program.

● The project is split into two distinct but heavily interdependent components, which

communicate via standard UNIX TCP sockets, in the form of a kind of client-server

relationship, but both the client and server are run on localhost and never communicate

with the outside internet (except in the case of repositories.) Our reasoning for this is

simple. One component of the program needs to always run in the background, in the

form of a daemon, in order to manage currently open containers. The other component

must be executed on-demand by the user via the command line, and be able to send

requests to the other component. Sockets are the most convenient way for these two

components to communicate on all supported platforms.

● We are using SSH as a means to access the shell of the virtual machine. This is fairly

standard and easy to implement since SSH is pretty much universal.

Novel features:

● We have created this project with an educational audience in mind, and are

custom-tailoring it for specific classes at Florida Tech.

● Compared to the previous solution used by the Compiler Theory class, andrew.cs.fit.edu,

our software runs entirely locally. No server component is required, which will hopefully

be significantly more convenient for students and professors.



Technical challenges:

● During this semester, we plan to use feedback provided by Compiler Theory students in

order to improve our system as well as to find bugs. Thus, during this process, we will

need to create a way for us to easily update our system and allow the users to obtain these

updates. We need to ensure that students can easily update their system to new versions

without it causing new issues.

● A major task for this semester is to create a wizard that allows users to create new

containers. Although we know that this is possible, we are not currently sure about the

best way to implement it. We need to do more research into Qemu to determine the

optimal way to automatically create new containers.

● Another major task for this semester is implementing the repository servers, which we

allow users to upload and download containers from a server. We need to determine the

best tool to use in order to host and dispatch these servers.

Design:

● System Architecture Diagram





● Repository Diagram

Evaluation:

● A major source of evaluation is to ask students to provide feedback through a survey. We

will focus on surveying students who are using the tool in the Compiler Theory course.

We will ask the students questions and ask them to provide a number from 1-5 for each

question. The questions we will ask will include:

○ Please rate how easy-to-use this tool is

○ Please rate how likely you would be to use this tool instead of setting up

environments on your personal computer

○ Please rate how easy it is to interact with a container’s file system

○ Please rate how easy it is to run commands on a container

○ Please rate how easy it is to manage the containers installed on your machine

(starting/stopping and installing)



● We also evaluate our tool by giving users tasks to complete and measuring the length of

time it takes them to complete those tasks. Some tasks that we will ask users to complete

are:

○ Create a new container with given specifications

○ Install a given container and look into its file system

○ Add source code files into a container, compile them, and then run them

● We would also like to develop a test suite for our tool to ensure that it fulfills all of our

requirements. This would be implemented using Pytest. It would likely need to run the

tests in some sort of Docker container to prevent it from interacting with the main system.

Progress Summary:

Module/Feature Completion % To do

Compiler Theory Container 95% Work with students to improve

Operating Systems Container 0% Deduce requirements for this container
Create image that fulfills requirements

Programming Languages
Container

10% Create image that includes all needed
compilers

Container Manager 80% Add delete command
Implement download, archive, add-repo,
update-repo
Fix bugs that occur during edge cases

Container Storage 0% Create code for container-hosting repositories
Ensure container manager can communicate
with repositories

Container Creation 0% Create wizard that converts user inputs to
specifications for a container
Allow containers to be created to those
specifications



Milestone 4 (Feb 13): itemized tasks:

● Implement, test, and demo specifications for container creation

● Implement, test, and demo container repositories

● Implement, test, and demo more intuitive file system interaction

● Implement, test, and demo fixes found by students in the Compiler Theory course

Milestone 5 (Mar 20): itemized tasks:

● Implement, test, and demo the Container Creation wizard

● Implement, test, and demo the ability to delete and rename containers

● Implement, test, and demo Test Suite based on requirements

● Conduct evaluation and analyze results

● Create poster for Senior Design Showcase

Milestone 6 (Apr 17): itemized tasks:

● Implement, test, and demo containers for Operating System Concepts and Programming

Language Concepts

● Test/demo of the entire system

● Conduct evaluation and analyze results

● Create user/developer manual

● Create demo video

Task matrix for Milestone 4:

Task Dylan Ian

Define specifications for

container creation

90% 10%



Repositories 10% 90%

Filesystem Interaction 90% 10%

Compiler Theory Bug Fixes 10% 90%

Milestone 4 Planned Tasks:

● Define specifications for container creation: In Milestone 5, we want to create a

standard process for the creation of containers through some sort of “wizard.” We

anticipate this to be a large task, so in this milestone we will first lay the foundation for it.

We will decide how the end user will create a container, what options they can choose,

which ones they can’t, how they choose them, etc.

● Repositories: A key requirement of our system is the ability for users to upload and

download containers from a centralized server. In this milestone, our goal is to implement

the code for such a repository as well as add code to the container manager to interact

with those repositories.

● File System Interaction: One feature our client has asked us to implement is the ability

to view and modify the virtual filesystem of the container in a more intuitive way, using

the host operating system’s file manager program or something equivalent in

functionality. Currently the send-file and get-file commands are sufficient to meet our

technical requirements, but they may prove rather tedious to use with no graphical

supplement. So in this milestone we will implement this feature.

● Compiler Theory Bug Fixes: During this milestone, students from the Compiler Theory

course will have the opportunity to use our tool to complete some of their assignments.



For this reason, we want to be in close contact with these students to get their feedback so

that we can quickly fix bugs and implement quality-of-life improvements.

Approval from Faculty Advisor:

"I have discussed with the team and approved this project plan. I will evaluate the progress and

assign a grade for each of the three milestones."

Signature: _______________________________ Date: ________


